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what problem being solved

what problem being solved

= Given an image, Crowd counting provide a
number of people in that image.

m Different approach have been proposed to
solve this problem. However all of them can be
classified into two categories : Detection
based crowd counting and Regression
based crowd counting.

= Detection based crowd count approaches :
Use Object detectors to localize the position of
each person. Better for uncrowded patches

= Regression based crowd count
approaches : density map of image patches.
Better for crowded patches

m Can crowd counting exclusively based on
either regression or detection be enough to
simultaneously handle high and low density
scene ?

Models
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Why this is an issue ?
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Why do we care ?, what
impact ?

Crowd count : is

important for high
level crowd analysis
like : crowd
monitoring, Scene
understanding,
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Why this is an issue ?

Why do we care ?, what
impact ?
Crowd count :
Coud Marage public safety
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Main issue : the
density varies

Solutions spatially and
temporally, each
= Regression based crowd count approach Can totally category is better for
find the number of people in a given area. a certain density.

= Detection based crowd count approach Can also do
the same job.
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Some Definitions

Pixel :

pixel(x,y)

]
N

X
Density at a specific pixel on a given
image

Wp € I;.D;ﬂ (pll;) = Z N%(p|p = P,a?).

Pep?*

et -
Total person count >-ver, PV (P11) = e

|
Ground trough : x and y that defines the
position of the detected object on the
picture
Density at a specific pixel on a given
image considering the effects from all the
Gaussian functions centered by annotation
points.
Total person count : Summing over the
density values of all pixels over the entire
image.
Q : Is a parameter that is used to minimize
the difference between the prediction
density map D?“(p]/;) and the ground-truth
fD,gtl(p|l,-) by learning a non-linear mapping
or Ij.
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Methods and contribution
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Detailed method : DetectionNet

Gaussian
convelution

Detection based density map
D{*! (p|2ger. I;) = Z N (p|lu = P,o?).
pep:fm
Loss for Detection base
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Detailed method continue : RegressionNet

Estimated cloud density map for all
pixels

Fﬁg(-!-rflnﬁlreg} = Dzeg(pu?reggff)-

Loss for based base
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Detailed method continue : QualityNet

,’Joi nt density
I estimation
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It receive as
input : image /;,
2 density map
from detection
and regression
and

It outputs a
probabilistic
attention map
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Detailed method continue :Model DecideNet

D(_fmnl

Ndet 1
1

det
Dj

*
Gaussian
convolutionl

DI (p| 1) =K i(p| Rqua, i) © DI (p| Ques, L)+
(J — Ki(p|2qua. 1:)) © DI (p|2peg. 1),
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Main Results
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Evaluation settings : 40k steps of iteration, initial learning rate 0.005. each 10k cut LR
by half, Images are cropped into 4x3 patches.

Method MSE Method MAE | MSE
SquareChn Detector 739.1 RFCN 5335 | 70.12 Keys
R-FCN 546 Faster R-CNN 451 | 5322
Faster R-CNN 6.60 Cross-scene 32.00 29.80
Count Forest 240 MCNN 3640 Dataset(1.Mall,2.
Exemplary Density 274 FCN 23.76 ;
Boosting CNN N/A Switching CNN 31.60 ShanghaiTech PartB,
MoCNN 13.40 CP-CNN 30.1 3.WorldExpo)
Weighted VLAD 9.12 DecideNet 21.53
DecideNet 1.90 DecideNer+R3 3075 | 29.42 4. Qualitative
o - results(Dataset 1
; S1 s2 S3 sS4 S5 Ave and 2)
Cross-scene 2.00 | 2950 | 9.70 9.30 | 3.10 | 12.90
M-CNN 3.40 | 2060 | 12.00 | 13.00 | 8.10 | 11.60 Accuracy of the
Local&Global - 780 | 1540 | 1530 | 25.60 | 4.10 | 11.70 . .
CNN-pixel 300 | 18.60 | 14.10 | 24.60 | 6.90 | 13.40 algorithm in
Switching-CNN 4.40 15.70 10.00 11.00 5.90 9.40 estimating MAE :
DecideNet 2.00 | 13.14 | 8.90 17.40 | 475 | 9.23
Mean Absolute Error
Method MAE MSE_ Metrics that
Mall SHB Mall SHB o h
RegNer only 337 | 285 | 42 | 663 indicates the
DetNet only 350 | 4490 | 560 | 73.18 robustness MSE :
RL’EA\'(>I+I;;’I}\)I\('I 1L5\e /usion) :g: 38.63 ;12(7) 3?;7 Mean Squared Error
1+DetNet+Qualit .83 2.2 .86 . .
RegNet+DetNet+QualiryNet (quality-aware loss) 1.52 1.90 31.98 of estimation
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Results continue

final

Regression based density map D!’ Detection hased density map D%t Final density map D
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Conclusion and Critiques
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Conclusion and Extension

Conclusion

= The author of this paper has considered the advantage of the two category of
approach in count the number of people in the crowd.

= They have proposed an architecture that combines Detection based crowd
count advantages and those of Regression based crowd count approaches.

= They claim the proposed architecture to be the first framework that uses both
regression and Detection at the same time.
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Conclusion and Extension

Extension

Use Generative Adversarial Network and Retrain detector for not only detecting
head but also other features that can represent a human.

Training Sﬂt% Discriminator

o=
: ﬁ@ %

Generator Fake image
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