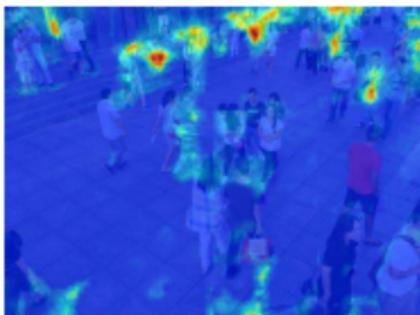


DecideNet: Counting Varying Density Crowds Through Attention Guided Detection and Density Estimation.

PAMI Meeting

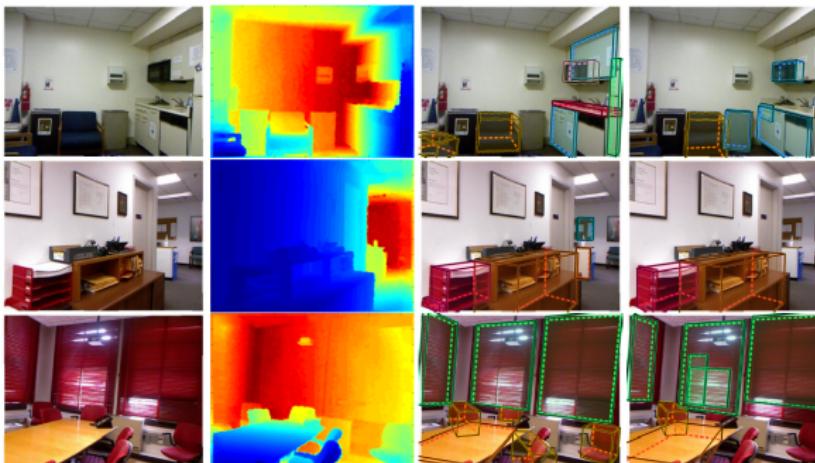
BUGINGO EMMANUEL¹


¹ School of information Science and Engineering
Department of Computer Science
Lab 301 Cloud Computing and Big Data

3rd August 2018

What problem being solved?

what problem being solved



Models

what problem being solved

- **Given an image**, Crowd counting provide a number of people in that image.
- Different approach have been proposed to solve this problem. However all of them can be classified into two categories : **Detection based crowd counting and Regression based crowd counting.**
- **Detection based crowd count approaches :** Use Object detectors to localize the position of each person. **Better for uncrowded patches**
- **Regression based crowd count approaches :** density map of image patches. **Better for crowded patches**
- *Can crowd counting exclusively based on either regression or detection be enough to simultaneously handle high and low density scene ?*

Why this is an issue ?

Why do we care ?, what impact ?

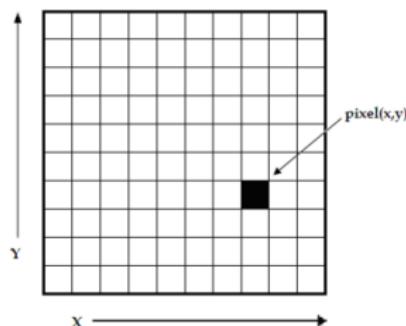
- **Crowd count** : is important for high level crowd analysis like : crowd monitoring, Scene understanding,

Why this is an issue ?

Solutions

- **Regression based crowd count approach** Can totally find the number of people in a given area.
- **Detection based crowd count approach** Can also do the same job.

Why do we care ?, what impact ?


- **Crowd count :** public safety management.

Big Challenge

- **Main issue :** the density varies spatially and temporally, each category is better for a certain density.

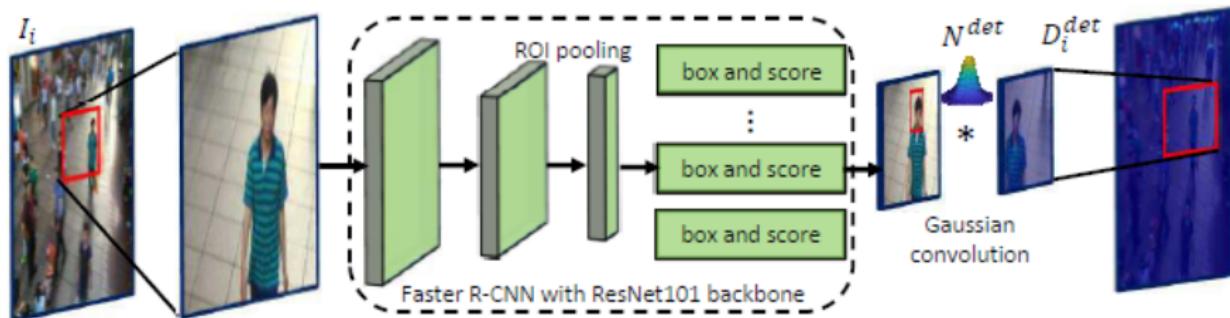
Some Definitions

Pixel :

Density at a specific pixel on a given image

$$\forall p \in I_i, D_i^{gt}(p|I_i) = \sum_{P \in \mathcal{P}_i^{gt}} \mathcal{N}^{gt}(p|\mu = P, \sigma^2).$$

Total person count $\sum_{p \in I_i} D_i^{gt}(p|I_i) = c_i$.

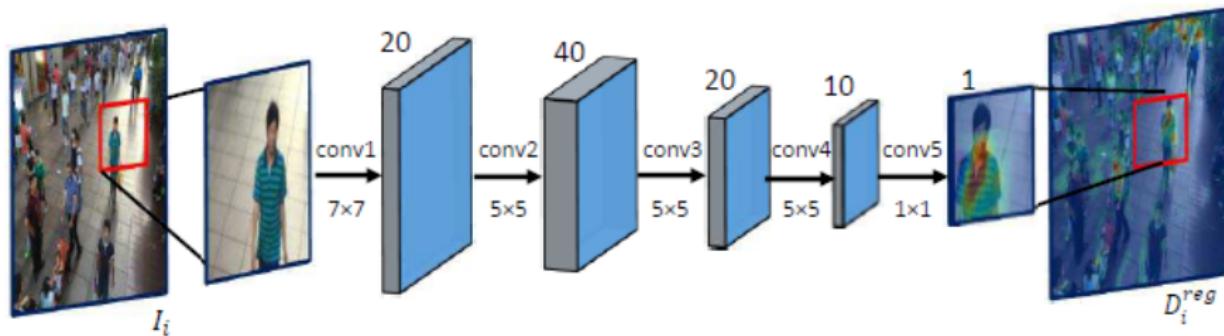

Ground truth : x and y that defines the position of the detected object on the picture

Density at a specific pixel on a given image considering the effects from all the Gaussian functions centered by annotation points.

Total person count : Summing over the density values of all pixels over the entire image.

Ω : Is a parameter that is used to minimize the difference between the prediction density map $D_i^{out}(p|I_i)$ and the ground-truth $D_i^{gt}(p|I_i)$ by learning a non-linear mapping for I_i .

Detailed method : DetectionNet

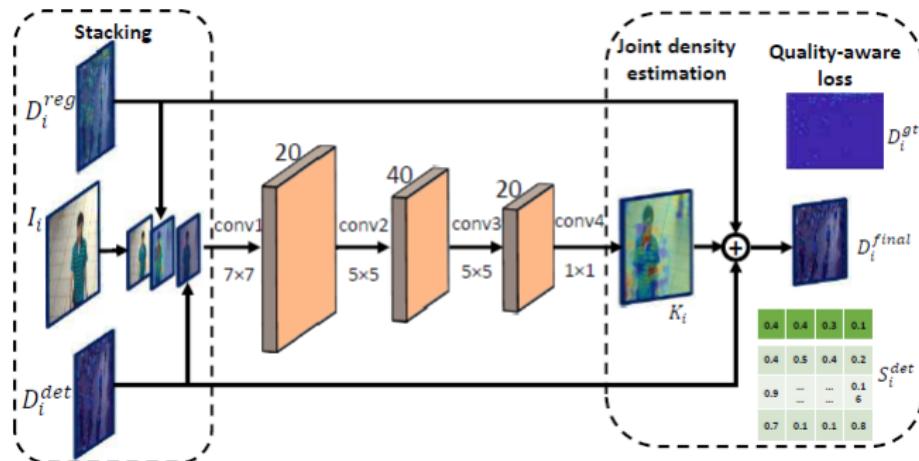

Detection based density map

$$D_i^{\text{det}}(p|\Omega_{\text{det}}, I_i) = \sum_{P \in \mathbf{P}_i^{\text{det}}} \mathcal{N}^{\text{det}}(p|\mu = P, \sigma^2).$$

Loss for Detection base

$$L_{\text{det}} = \frac{1}{N} \sum_i [L_{\text{cls}}(\mathbf{P}_i^{\text{det}}, \mathbf{P}_i^{\text{gt}} | \Omega_{\text{det}}) + L_{\text{loc}}(\mathbf{P}_i^{\text{det}}, \mathbf{P}_i^{\text{gt}} | \Omega_{\text{det}})]$$

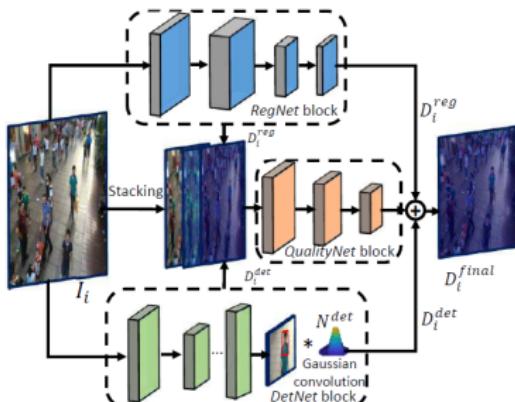
Detailed method continue : RegressionNet


Estimated cloud density map for all pixels

$$\mathcal{F}^{reg}(I_i | \Omega_{reg}) = D_i^{reg}(p | \Omega_{reg}, I_i).$$

Loss for based base

$$L_{reg} = \frac{1}{N} \sum_i \sum_{p \in I_i} [D_i^{reg}(p | \Omega_{reg}, I_i) - D_i^{gt}(p | I_i)]^2,$$


Detailed method continue : QualityNet

It receive as input : image I_i , 2 density map from detection and regression and
It outputs a probabilistic attention map $K_i(P|\Omega_{qua}, I_i)$

$$L_{qua} = \frac{1}{N} \sum_i \sum_{p \in I_i} \left\{ \left[D_i^{final}(p|\Omega_{qua}, I_i) - D_i^{gt}(p|I_i) \right]^2 + \lambda \|K_i(p|\Omega_{qua}, I_i) - S_i^{det}(p|I_i)\|^2 \right\},$$

Detailed method continue :Model DecideNet

$$D_i^{final}(p|I_i) = K_i(p|\Omega_{qua}, I_i) \odot D_i^{det}(p|\Omega_{det}, I_i) + \\ (\mathbf{J} - K_i(p|\Omega_{qua}, I_i)) \odot D_i^{reg}(p|\Omega_{reg}, I_i),$$

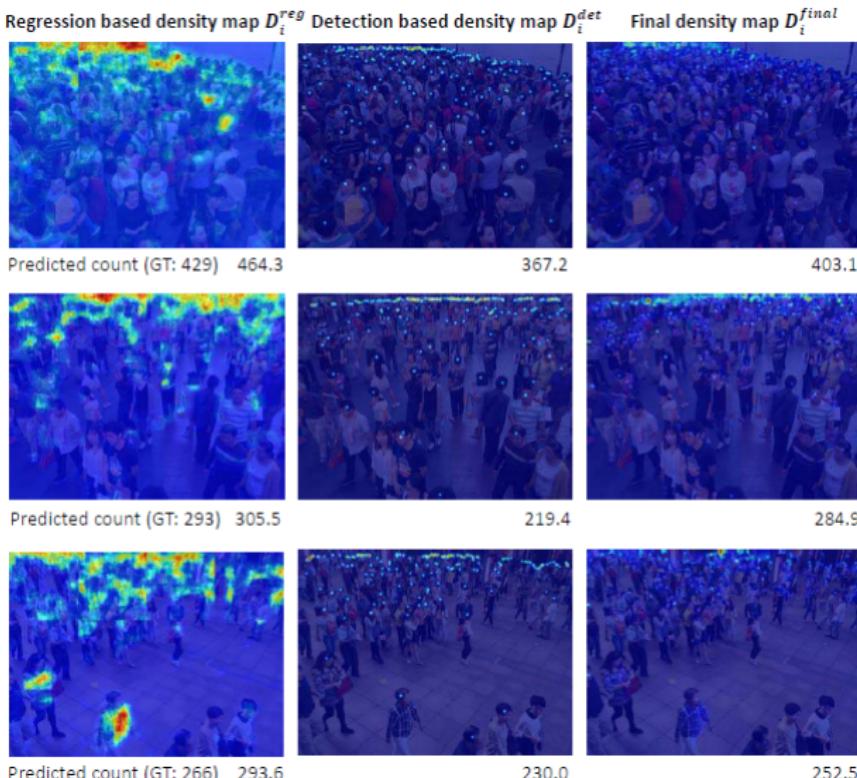
$$L_{decide} = L_{reg} + L_{det} + L_{qua},$$

Results

Evaluation settings : 40k steps of iteration, initial learning rate 0.005. each 10k cut LR by half, Images are cropped into 4x3 patches.

Method	MAE	MSE
SquareChn Detector	20.55	439.1
R-FCN	6.02	5.46
Faster R-CNN	5.91	6.60
Count Forest	4.40	2.40
Exemplary Density	1.82	2.74
Boosting CNN	2.01	N/A
MoCNN	2.75	13.40
Weighted VLAD	2.41	9.12
<i>DecideNet</i>	1.52	1.90

Method	MAE	MSE
R-FCN	52.35	70.12
Faster R-CNN	44.51	53.22
Cross-scene	32.00	49.80
M-CNN	26.40	41.30
FCN	23.76	33.12
Switching-CNN	21.60	33.40
CP-CNN	20.1	30.1
<i>DecideNet</i>	21.53	31.98
<i>DecideNet+R3</i>	20.75	29.42


Method	MAE					
	S1	S2	S3	S4	S5	Ave
Cross-scene	2.00	29.50	9.70	9.30	3.10	12.90
M-CNN	3.40	20.60	12.90	13.00	8.10	11.60
Local&Global	7.80	15.40	15.30	25.60	4.10	11.70
CNN-pixel	2.90	18.60	14.10	24.60	6.90	13.40
Switching-CNN	4.40	15.70	10.00	11.00	5.90	9.40
<i>DecideNet</i>	2.00	13.14	8.90	17.40	4.75	9.23

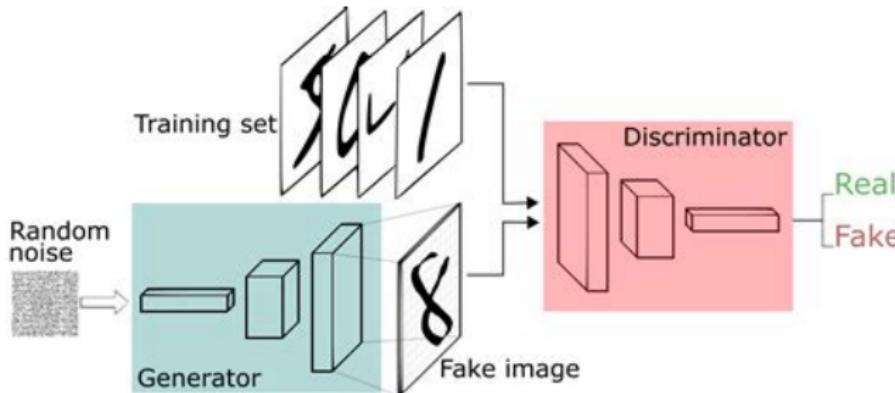
Method	MAE		MSE	
	Mall	SHB	Mall	SHB
<i>RegNet</i> only	3.37	42.85	4.22	63.63
<i>DetNet</i> only	4.50	44.90	5.60	73.18
<i>RegNet+DetNet</i> (Late Fusion)	3.93	38.63	4.96	65.27
<i>RegNet+DetNet+QualityNet</i>	1.83	24.93	2.27	41.86
<i>RegNet+DetNet+QualityNet</i> (quality-aware loss)	1.52	21.53	1.90	31.98

Keys

- Dataset(1.Mall,2. ShanghaiTech PartB, 3.WorldExpo)
- 4. Qualitative results(Dataset 1 and 2)
- Accuracy of the algorithm in estimating MAE : Mean Absolute Error
- Metrics that indicates the robustness MSE : Mean Squared Error of estimation

Results continue

Conclusion and Extension


Conclusion

- The author of this paper has considered the advantage of the two category of approach in count the number of people in the crowd.
- They have proposed an architecture that combines **Detection based crowd count advantages and those of Regression based crowd count approaches.**
- They claim the proposed architecture to be the first framework that uses both regression and Detection at the same time.

Conclusion and Extension

Extension

Use **Generative Adversarial Network** and **Retrain detector** for not only detecting head but also other features that can represent a human.

Q and A

